Struct gstreamer::Clock[][src]

pub struct Clock(_);
Expand description

GStreamer uses a global clock to synchronize the plugins in a pipeline. Different clock implementations are possible by implementing this abstract base class or, more conveniently, by subclassing SystemClock.

The Clock returns a monotonically increasing time with the method ClockExt::time(). Its accuracy and base time depend on the specific clock implementation but time is always expressed in nanoseconds. Since the baseline of the clock is undefined, the clock time returned is not meaningful in itself, what matters are the deltas between two clock times. The time returned by a clock is called the absolute time.

The pipeline uses the clock to calculate the running time. Usually all renderers synchronize to the global clock using the buffer timestamps, the EventType::Segment events and the element’s base time, see Pipeline.

A clock implementation can support periodic and single shot clock notifications both synchronous and asynchronous.

One first needs to create a GstClockID for the periodic or single shot notification using ClockExtManual::new_single_shot_id() or ClockExtManual::new_periodic_id().

To perform a blocking wait for the specific time of the GstClockID use gst_clock_id_wait(). To receive a callback when the specific time is reached in the clock use gst_clock_id_wait_async(). Both these calls can be interrupted with the gst_clock_id_unschedule() call. If the blocking wait is unscheduled a return value of ClockReturn::Unscheduled is returned.

Periodic callbacks scheduled async will be repeatedly called automatically until they are unscheduled. To schedule a sync periodic callback, gst_clock_id_wait() should be called repeatedly.

The async callbacks can happen from any thread, either provided by the core or from a streaming thread. The application should be prepared for this.

A GstClockID that has been unscheduled cannot be used again for any wait operation, a new GstClockID should be created and the old unscheduled one should be destroyed with gst_clock_id_unref().

It is possible to perform a blocking wait on the same GstClockID from multiple threads. However, registering the same GstClockID for multiple async notifications is not possible, the callback will only be called for the thread registering the entry last.

None of the wait operations unref the GstClockID, the owner is responsible for unreffing the ids itself. This holds for both periodic and single shot notifications. The reason being that the owner of the GstClockID has to keep a handle to the GstClockID to unblock the wait on FLUSHING events or state changes and if the entry would be unreffed automatically, the handle might become invalid without any notification.

These clock operations do not operate on the running time, so the callbacks will also occur when not in PLAYING state as if the clock just keeps on running. Some clocks however do not progress when the element that provided the clock is not PLAYING.

When a clock has the ClockFlags::CAN_SET_MASTER flag set, it can be slaved to another Clock with ClockExt::set_master(). The clock will then automatically be synchronized to this master clock by repeatedly sampling the master clock and the slave clock and recalibrating the slave clock with ClockExt::set_calibration(). This feature is mostly useful for plugins that have an internal clock but must operate with another clock selected by the Pipeline. They can track the offset and rate difference of their internal clock relative to the master clock by using the ClockExt::calibration() function.

The master/slave synchronisation can be tuned with the property::Clock::timeout, property::Clock::window-size and property::Clock::window-threshold properties. The property::Clock::timeout property defines the interval to sample the master clock and run the calibration functions. property::Clock::window-size defines the number of samples to use when calibrating and property::Clock::window-threshold defines the minimum number of samples before the calibration is performed.

This is an Abstract Base Class, you cannot instantiate it.

Implements

ClockExt, GstObjectExt, glib::ObjectExt, ClockExtManual

Implementations

Trait Implementations

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

Feeds this value into the given Hasher. Read more

Feeds a slice of this type into the given Hasher. Read more

Override the virtual methods of this class for the given subclass and do other class initialization. Read more

Instance specific initialization. Read more

This method returns an Ordering between self and other. Read more

Compares and returns the maximum of two values. Read more

Compares and returns the minimum of two values. Read more

Restrict a value to a certain interval. Read more

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Returns the type identifier of Self.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Upcasts an object to a superclass or interface T. Read more

Upcasts an object to a reference of its superclass or interface T. Read more

Tries to downcast to a subclass or interface implementor T. Read more

Tries to downcast to a reference of its subclass or interface implementor T. Read more

Tries to cast to an object of type T. This handles upcasting, downcasting and casting between interface and interface implementors. All checks are performed at runtime, while downcast and upcast will do many checks at compile-time already. Read more

Tries to cast to reference to an object of type T. This handles upcasting, downcasting and casting between interface and interface implementors. All checks are performed at runtime, while downcast and upcast will do many checks at compile-time already. Read more

Casts to T unconditionally. Read more

Casts to &T unconditionally. Read more

Performs the conversion.

Performs the conversion.

Returns true if the object is an instance of (can be cast to) T.

Safety Read more

Safety Read more

Safety Read more

Safety Read more

Safety Read more

Safety Read more

Same as connect but takes a SignalId instead of a signal name.

Same as connect_local but takes a SignalId instead of a signal name.

Same as connect_unsafe but takes a SignalId instead of a signal name.

Emit signal by signal id.

Emit signal with details by signal id.

Emit signal by it’s name.

Same as emit but takes Value for the arguments.

Same as emit_by_name but takes Value for the arguments.

Same as emit_with_details but takes Value for the arguments.

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

🔬 This is a nightly-only experimental API. (toowned_clone_into)

recently added

Uses borrowed data to replace owned data, usually by cloning. Read more

Returns a SendValue clone of self.

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.