Struct gstreamer_video::VideoOverlay[][src]

pub struct VideoOverlay(_);
Expand description

The VideoOverlay interface is used for 2 main purposes :

  • To get a grab on the Window where the video sink element is going to render. This is achieved by either being informed about the Window identifier that the video sink element generated, or by forcing the video sink element to use a specific Window identifier for rendering.
  • To force a redrawing of the latest video frame the video sink element displayed on the Window. Indeed if the gst::Pipeline is in gst::State::Paused state, moving the Window around will damage its content. Application developers will want to handle the Expose events themselves and force the video sink element to refresh the Window’s content.

Using the Window created by the video sink is probably the simplest scenario, in some cases, though, it might not be flexible enough for application developers if they need to catch events such as mouse moves and button clicks.

Setting a specific Window identifier on the video sink element is the most flexible solution but it has some issues. Indeed the application needs to set its Window identifier at the right time to avoid internal Window creation from the video sink element. To solve this issue a gst::Message is posted on the bus to inform the application that it should set the Window identifier immediately. Here is an example on how to do that correctly:

static GstBusSyncReply
create_window (GstBus * bus, GstMessage * message, GstPipeline * pipeline)
{
 // ignore anything but 'prepare-window-handle' element messages
 if (!gst_is_video_overlay_prepare_window_handle_message (message))
   return GST_BUS_PASS;

 win = XCreateSimpleWindow (disp, root, 0, 0, 320, 240, 0, 0, 0);

 XSetWindowBackgroundPixmap (disp, win, None);

 XMapRaised (disp, win);

 XSync (disp, FALSE);

 gst_video_overlay_set_window_handle (GST_VIDEO_OVERLAY (GST_MESSAGE_SRC (message)),
     win);

 gst_message_unref (message);

 return GST_BUS_DROP;
}
...
int
main (int argc, char **argv)
{
...
 bus = gst_pipeline_get_bus (GST_PIPELINE (pipeline));
 gst_bus_set_sync_handler (bus, (GstBusSyncHandler) create_window, pipeline,
        NULL);
...
}

Two basic usage scenarios

There are two basic usage scenarios: in the simplest case, the application uses playbin or playsink or knows exactly what particular element is used for video output, which is usually the case when the application creates the videosink to use (e.g. xvimagesink, ximagesink, etc.) itself; in this case, the application can just create the videosink element, create and realize the window to render the video on and then call VideoOverlayExtManual::set_window_handle() directly with the XID or native window handle, before starting up the pipeline. As playbin and playsink implement the video overlay interface and proxy it transparently to the actual video sink even if it is created later, this case also applies when using these elements.

In the other and more common case, the application does not know in advance what GStreamer video sink element will be used for video output. This is usually the case when an element such as autovideosink is used. In this case, the video sink element itself is created asynchronously from a GStreamer streaming thread some time after the pipeline has been started up. When that happens, however, the video sink will need to know right then whether to render onto an already existing application window or whether to create its own window. This is when it posts a prepare-window-handle message, and that is also why this message needs to be handled in a sync bus handler which will be called from the streaming thread directly (because the video sink will need an answer right then).

As response to the prepare-window-handle element message in the bus sync handler, the application may use VideoOverlayExtManual::set_window_handle() to tell the video sink to render onto an existing window surface. At this point the application should already have obtained the window handle / XID, so it just needs to set it. It is generally not advisable to call any GUI toolkit functions or window system functions from the streaming thread in which the prepare-window-handle message is handled, because most GUI toolkits and windowing systems are not thread-safe at all and a lot of care would be required to co-ordinate the toolkit and window system calls of the different threads (Gtk+ users please note: prior to Gtk+ 2.18 GDK_WINDOW_XID was just a simple structure access, so generally fine to do within the bus sync handler; this macro was changed to a function call in Gtk+ 2.18 and later, which is likely to cause problems when called from a sync handler; see below for a better approach without GDK_WINDOW_XID used in the callback).

GstVideoOverlay and Gtk+

#include <gst/video/videooverlay.h>
#include <gtk/gtk.h>
#ifdef GDK_WINDOWING_X11
#include <gdk/gdkx.h>  // for GDK_WINDOW_XID
#endif
#ifdef GDK_WINDOWING_WIN32
#include <gdk/gdkwin32.h>  // for GDK_WINDOW_HWND
#endif
...
static guintptr video_window_handle = 0;
...
static GstBusSyncReply
bus_sync_handler (GstBus * bus, GstMessage * message, gpointer user_data)
{
 // ignore anything but 'prepare-window-handle' element messages
 if (!gst_is_video_overlay_prepare_window_handle_message (message))
   return GST_BUS_PASS;

 if (video_window_handle != 0) {
   GstVideoOverlay *overlay;

   // GST_MESSAGE_SRC (message) will be the video sink element
   overlay = GST_VIDEO_OVERLAY (GST_MESSAGE_SRC (message));
   gst_video_overlay_set_window_handle (overlay, video_window_handle);
 } else {
   g_warning ("Should have obtained video_window_handle by now!");
 }

 gst_message_unref (message);
 return GST_BUS_DROP;
}
...
static void
video_widget_realize_cb (GtkWidget * widget, gpointer data)
{
#if GTK_CHECK_VERSION(2,18,0)
  // Tell Gtk+/Gdk to create a native window for this widget instead of
  // drawing onto the parent widget.
  // This is here just for pedagogical purposes, GDK_WINDOW_XID will call
  // it as well in newer Gtk versions
  if (!gdk_window_ensure_native (widget->window))
    g_error ("Couldn't create native window needed for GstVideoOverlay!");
#endif

#ifdef GDK_WINDOWING_X11
  {
    gulong xid = GDK_WINDOW_XID (gtk_widget_get_window (video_window));
    video_window_handle = xid;
  }
#endif
#ifdef GDK_WINDOWING_WIN32
  {
    HWND wnd = GDK_WINDOW_HWND (gtk_widget_get_window (video_window));
    video_window_handle = (guintptr) wnd;
  }
#endif
}
...
int
main (int argc, char **argv)
{
  GtkWidget *video_window;
  GtkWidget *app_window;
  ...
  app_window = gtk_window_new (GTK_WINDOW_TOPLEVEL);
  ...
  video_window = gtk_drawing_area_new ();
  g_signal_connect (video_window, "realize",
      G_CALLBACK (video_widget_realize_cb), NULL);
  gtk_widget_set_double_buffered (video_window, FALSE);
  ...
  // usually the video_window will not be directly embedded into the
  // application window like this, but there will be many other widgets
  // and the video window will be embedded in one of them instead
  gtk_container_add (GTK_CONTAINER (ap_window), video_window);
  ...
  // show the GUI
  gtk_widget_show_all (app_window);

  // realize window now so that the video window gets created and we can
  // obtain its XID/HWND before the pipeline is started up and the videosink
  // asks for the XID/HWND of the window to render onto
  gtk_widget_realize (video_window);

  // we should have the XID/HWND now
  g_assert (video_window_handle != 0);
  ...
  // set up sync handler for setting the xid once the pipeline is started
  bus = gst_pipeline_get_bus (GST_PIPELINE (pipeline));
  gst_bus_set_sync_handler (bus, (GstBusSyncHandler) bus_sync_handler, NULL,
      NULL);
  gst_object_unref (bus);
  ...
  gst_element_set_state (pipeline, GST_STATE_PLAYING);
  ...
}

GstVideoOverlay and Qt

#include <glib.h>;
#include <gst/gst.h>;
#include <gst/video/videooverlay.h>;

#include <QApplication>;
#include <QTimer>;
#include <QWidget>;

int main(int argc, char *argv[])
{
  if (!g_thread_supported ())
    g_thread_init (NULL);

  gst_init (&argc, &argv);
  QApplication app(argc, argv);
  app.connect(&app, SIGNAL(lastWindowClosed()), &app, SLOT(quit ()));

  // prepare the pipeline

  GstElement *pipeline = gst_pipeline_new ("xvoverlay");
  GstElement *src = gst_element_factory_make ("videotestsrc", NULL);
  GstElement *sink = gst_element_factory_make ("xvimagesink", NULL);
  gst_bin_add_many (GST_BIN (pipeline), src, sink, NULL);
  gst_element_link (src, sink);

  // prepare the ui

  QWidget window;
  window.resize(320, 240);
  window.show();

  WId xwinid = window.winId();
  gst_video_overlay_set_window_handle (GST_VIDEO_OVERLAY (sink), xwinid);

  // run the pipeline

  GstStateChangeReturn sret = gst_element_set_state (pipeline,
      GST_STATE_PLAYING);
  if (sret == GST_STATE_CHANGE_FAILURE) {
    gst_element_set_state (pipeline, GST_STATE_NULL);
    gst_object_unref (pipeline);
    // Exit application
    QTimer::singleShot(0, QApplication::activeWindow(), SLOT(quit()));
  }

  int ret = app.exec();

  window.hide();
  gst_element_set_state (pipeline, GST_STATE_NULL);
  gst_object_unref (pipeline);

  return ret;
}

Implements

VideoOverlayExt, VideoOverlayExtManual

Trait Implementations

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

Formats the value using the given formatter. Read more

Feeds this value into the given Hasher. Read more

Feeds a slice of this type into the given Hasher. Read more

This method returns an Ordering between self and other. Read more

Compares and returns the maximum of two values. Read more

Compares and returns the minimum of two values. Read more

Restrict a value to a certain interval. Read more

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

Returns the type identifier of Self.

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Upcasts an object to a superclass or interface T. Read more

Upcasts an object to a reference of its superclass or interface T. Read more

Tries to downcast to a subclass or interface implementor T. Read more

Tries to downcast to a reference of its subclass or interface implementor T. Read more

Tries to cast to an object of type T. This handles upcasting, downcasting and casting between interface and interface implementors. All checks are performed at runtime, while downcast and upcast will do many checks at compile-time already. Read more

Tries to cast to reference to an object of type T. This handles upcasting, downcasting and casting between interface and interface implementors. All checks are performed at runtime, while downcast and upcast will do many checks at compile-time already. Read more

Casts to T unconditionally. Read more

Casts to &T unconditionally. Read more

Performs the conversion.

Performs the conversion.

Returns true if the object is an instance of (can be cast to) T.

Safety Read more

Safety Read more

Safety Read more

Safety Read more

Safety Read more

Safety Read more

Same as connect but takes a SignalId instead of a signal name.

Same as connect_local but takes a SignalId instead of a signal name.

Same as connect_unsafe but takes a SignalId instead of a signal name.

Emit signal by signal id.

Emit signal with details by signal id.

Emit signal by it’s name.

Same as emit but takes Value for the arguments.

Same as emit_by_name but takes Value for the arguments.

Same as emit_with_details but takes Value for the arguments.

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

🔬 This is a nightly-only experimental API. (toowned_clone_into)

recently added

Uses borrowed data to replace owned data, usually by cloning. Read more

Returns a SendValue clone of self.

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.