[−][src]Struct gstreamer_editing_services::Asset
A Asset in the GStreamer Editing Services represents a resources
that can be used. In particular, any class that implements the
Extractable interface may have some associated assets with a
corresponding Asset:extractable-type, from which its objects can be
extracted using AssetExt::extract. Some examples would be
Clip, Formatter and TrackElement.
All assets that are created within GES are stored in a cache; one per
each Asset:id and Asset:extractable-type pair. These assets can
be fetched, and initialized if they do not yet exist in the cache,
using Asset::request.
GESAsset *effect_asset;
GESEffect *effect;
// You create an asset for an effect
effect_asset = ges_asset_request (GES_TYPE_EFFECT, "agingtv", NULL);
// And now you can extract an instance of GESEffect from that asset
effect = GES_EFFECT (ges_asset_extract (effect_asset));
The advantage of using assets, rather than simply creating the object
directly, is that the currently loaded resources can be listed with
ges_list_assets and displayed to an end user. For example, to show
which media files have been loaded, and a standard list of effects. In
fact, the GES library already creates assets for TransitionClip and
Formatter, which you can use to list all the available transition
types and supported formats.
The other advantage is that Asset implements MetaContainer, so
metadata can be set on the asset, with some subclasses automatically
creating this metadata on initiation.
For example, to display information about the supported formats, you could do the following:
GList *formatter_assets, *tmp;
// List all the transitions
formatter_assets = ges_list_assets (GES_TYPE_FORMATTER);
// Print some infos about the formatter GESAsset
for (tmp = formatter_assets; tmp; tmp = tmp->next) {
g_print ("Name of the formatter: %s, file extension it produces: %s",
ges_meta_container_get_string (
GES_META_CONTAINER (tmp->data), GES_META_FORMATTER_NAME),
ges_meta_container_get_string (
GES_META_CONTAINER (tmp->data), GES_META_FORMATTER_EXTENSION));
}
g_list_free (transition_assets);
ID
Each asset is uniquely defined in the cache by its
Asset:extractable-type and Asset:id. Depending on the
Asset:extractable-type, the Asset:id can be used to parametrise
the creation of the object upon extraction. By default, a class that
implements Extractable will only have a single associated asset,
with an Asset:id set to the type name of its objects. However, this
is overwritten by some implementations, which allow a class to have
multiple associated assets. For example, for TransitionClip the
Asset:id will be a nickname of the TransitionClip:vtype. You
should check the documentation for each extractable type to see if they
differ from the default.
Moreover, each Asset:extractable-type may also associate itself
with a specific asset subclass. In such cases, when their asset is
requested, an asset of this subclass will be returned instead.
Managing
You can use a Project to easily manage the assets of a
Timeline.
Proxies
Some assets can (temporarily) act as the Asset:proxy of another
asset. When the original asset is requested from the cache, the proxy
will be returned in its place. This can be useful if, say, you want
to substitute a UriClipAsset corresponding to a high resolution
media file with the asset of a lower resolution stand in.
An asset may even have several proxies, the first of which will act as
its default and be returned on requests, but the others will be ordered
to take its place once it is removed. You can add a proxy to an asset,
or set its default, using AssetExt::set_proxy, and you can remove
them with AssetExt::unproxy.
Implements
Implementations
impl Asset[src]
pub fn needs_reload(extractable_type: Type, id: Option<&str>) -> bool[src]
Indicate that an existing Asset in the cache should be reloaded
upon the next request. This can be used when some condition has
changed, which may require that an existing asset should be updated.
For example, if an external resource has changed or now become
available.
Note, the asset is not immediately changed, but will only actually
reload on the next call to Asset::request or
Asset::request_async.
extractable_type
The Asset:extractable-type of the asset that
needs reloading
id
The Asset:id of the asset asset that needs
reloading
Returns
true if the specified asset exists in the cache and could be
marked for reloading.
pub fn request(
extractable_type: Type,
id: Option<&str>
) -> Result<Option<Asset>, Error>[src]
extractable_type: Type,
id: Option<&str>
) -> Result<Option<Asset>, Error>
Returns an asset with the given properties. If such an asset already exists in the cache (it has been previously created in GES), then a reference to the existing asset is returned. Otherwise, a newly created asset is returned, and also added to the cache.
If the requested asset has been loaded with an error, then error is
set, if given, and None will be returned instead.
Note that the given id may not be exactly the Asset:id that is
set on the returned asset. For instance, it may be adjusted into a
standard format. Or, if a Extractable type does not have its
extraction parametrised, as is the case by default, then the given id
may be ignored entirely and the Asset:id set to some standard, in
which case a None id can be given.
Similarly, the given extractable_type may not be exactly the
Asset:extractable-type that is set on the returned asset. Instead,
the actual extractable type may correspond to a subclass of the given
extractable_type, depending on the given id.
Moreover, depending on the given extractable_type, the returned asset
may belong to a subclass of Asset.
Finally, if the requested asset has a Asset:proxy, then the proxy
that is found at the end of the chain of proxies is returned (a proxy's
proxy will take its place, and so on, unless it has no proxy).
Some asset subclasses only support asynchronous construction of its
assets, such as UriClip. For such assets this method will fail, and
you should use Asset::request_async instead. In the case of
UriClip, you can use UriClipAsset::request_sync if you only
want to wait for the request to finish.
extractable_type
The Asset:extractable-type of the asset
id
The Asset:id of the asset
Returns
A reference to the requested
asset, or None if an error occurred.
pub fn request_async<P: IsA<Cancellable>, Q: FnOnce(Result<Asset, Error>) + Send + 'static>(
extractable_type: Type,
id: Option<&str>,
cancellable: Option<&P>,
callback: Q
)[src]
extractable_type: Type,
id: Option<&str>,
cancellable: Option<&P>,
callback: Q
)
Requests an asset with the given properties asynchronously (see
Asset::request). When the asset has been initialized or fetched
from the cache, the given callback function will be called. The
asset can then be retrieved in the callback using the
Asset::request_finish method on the given gio::AsyncResult.
Note that the source object passed to the callback will be the
Asset corresponding to the request, but it may not have loaded
correctly and therefore can not be used as is. Instead,
Asset::request_finish should be used to fetch a usable asset, or
indicate that an error occurred in the asset's creation.
Note that the callback will be called in the glib::MainLoop running under
the same glib::MainContext that ges_init was called in. So, if you wish
the callback to be invoked outside the default glib::MainContext, you can
call glib::MainContext::push_thread_default in a new thread before
calling ges_init.
Example of an asynchronous asset request:
// The request callback
static void
asset_loaded_cb (GESAsset * source, GAsyncResult * res, gpointer user_data)
{
GESAsset *asset;
GError *error = NULL;
asset = ges_asset_request_finish (res, &error);
if (asset) {
g_print ("The file: %s is usable as a GESUriClip",
ges_asset_get_id (asset));
} else {
g_print ("The file: %s is *not* usable as a GESUriClip because: %s",
ges_asset_get_id (source), error->message);
}
gst_object_unref (asset);
}
// The request:
ges_asset_request_async (GES_TYPE_URI_CLIP, some_uri, NULL,
(GAsyncReadyCallback) asset_loaded_cb, user_data);
extractable_type
The Asset:extractable-type of the asset
id
The Asset:id of the asset
cancellable
An object to allow cancellation of the
asset request, or None to ignore
callback
A function to call when the initialization is finished
user_data
Data to be passed to callback
pub fn request_async_future(
extractable_type: Type,
id: Option<&str>
) -> Pin<Box_<dyn Future<Output = Result<Asset, Error>> + 'static>>[src]
extractable_type: Type,
id: Option<&str>
) -> Pin<Box_<dyn Future<Output = Result<Asset, Error>> + 'static>>
Trait Implementations
impl Clone for Asset[src]
impl Debug for Asset[src]
impl Eq for Asset[src]
impl Hash for Asset[src]
fn hash<__H: Hasher>(&self, state: &mut __H)[src]
fn hash_slice<H>(data: &[Self], state: &mut H) where
H: Hasher, 1.3.0[src]
H: Hasher,
impl IsA<Asset> for Project[src]
impl IsA<Asset> for UriClipAsset[src]
impl IsA<Asset> for UriSourceAsset[src]
impl Ord for Asset[src]
fn cmp(&self, other: &Asset) -> Ordering[src]
#[must_use]fn max(self, other: Self) -> Self1.21.0[src]
#[must_use]fn min(self, other: Self) -> Self1.21.0[src]
#[must_use]fn clamp(self, min: Self, max: Self) -> Self[src]
impl<T: ObjectType> PartialEq<T> for Asset[src]
impl<T: ObjectType> PartialOrd<T> for Asset[src]
fn partial_cmp(&self, other: &T) -> Option<Ordering>[src]
#[must_use]fn lt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]fn le(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]fn gt(&self, other: &Rhs) -> bool1.0.0[src]
#[must_use]fn ge(&self, other: &Rhs) -> bool1.0.0[src]
impl StaticType for Asset[src]
fn static_type() -> Type[src]
Auto Trait Implementations
impl RefUnwindSafe for Asset
impl !Send for Asset
impl !Sync for Asset
impl Unpin for Asset
impl UnwindSafe for Asset
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized, [src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized, [src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T[src]
impl<Super, Sub> CanDowncast<Sub> for Super where
Sub: IsA<Super>,
Super: IsA<Super>, [src]
Sub: IsA<Super>,
Super: IsA<Super>,
impl<T> Cast for T where
T: ObjectType, [src]
T: ObjectType,
fn upcast<T>(self) -> T where
Self: IsA<T>,
T: ObjectType, [src]
Self: IsA<T>,
T: ObjectType,
fn upcast_ref<T>(&self) -> &T where
Self: IsA<T>,
T: ObjectType, [src]
Self: IsA<T>,
T: ObjectType,
fn downcast<T>(self) -> Result<T, Self> where
Self: CanDowncast<T>,
T: ObjectType, [src]
Self: CanDowncast<T>,
T: ObjectType,
fn downcast_ref<T>(&self) -> Option<&T> where
Self: CanDowncast<T>,
T: ObjectType, [src]
Self: CanDowncast<T>,
T: ObjectType,
fn dynamic_cast<T>(self) -> Result<T, Self> where
T: ObjectType, [src]
T: ObjectType,
fn dynamic_cast_ref<T>(&self) -> Option<&T> where
T: ObjectType, [src]
T: ObjectType,
unsafe fn unsafe_cast<T>(self) -> T where
T: ObjectType, [src]
T: ObjectType,
unsafe fn unsafe_cast_ref<T>(&self) -> &T where
T: ObjectType, [src]
T: ObjectType,
impl<T> From<T> for T[src]
impl<O> GObjectExtManualGst for O where
O: IsA<Object>, [src]
O: IsA<Object>,
fn set_property_from_str(&self, name: &str, value: &str)[src]
impl<T, U> Into<U> for T where
U: From<T>, [src]
U: From<T>,
impl<T> ObjectExt for T where
T: ObjectType, [src]
T: ObjectType,
fn is<U>(&self) -> bool where
U: StaticType, [src]
U: StaticType,
fn get_type(&self) -> Type[src]
fn get_object_class(&self) -> &ObjectClass[src]
fn set_properties(
&self,
property_values: &[(&str, &dyn ToValue)]
) -> Result<(), BoolError>[src]
&self,
property_values: &[(&str, &dyn ToValue)]
) -> Result<(), BoolError>
fn set_property<'a, N>(
&self,
property_name: N,
value: &dyn ToValue
) -> Result<(), BoolError> where
N: Into<&'a str>, [src]
&self,
property_name: N,
value: &dyn ToValue
) -> Result<(), BoolError> where
N: Into<&'a str>,
fn get_property<'a, N>(&self, property_name: N) -> Result<Value, BoolError> where
N: Into<&'a str>, [src]
N: Into<&'a str>,
unsafe fn set_qdata<QD>(&self, key: Quark, value: QD) where
QD: 'static, [src]
QD: 'static,
unsafe fn get_qdata<QD>(&self, key: Quark) -> Option<&QD> where
QD: 'static, [src]
QD: 'static,
unsafe fn steal_qdata<QD>(&self, key: Quark) -> Option<QD> where
QD: 'static, [src]
QD: 'static,
unsafe fn set_data<QD>(&self, key: &str, value: QD) where
QD: 'static, [src]
QD: 'static,
unsafe fn get_data<QD>(&self, key: &str) -> Option<&QD> where
QD: 'static, [src]
QD: 'static,
unsafe fn steal_data<QD>(&self, key: &str) -> Option<QD> where
QD: 'static, [src]
QD: 'static,
fn block_signal(&self, handler_id: &SignalHandlerId)[src]
fn unblock_signal(&self, handler_id: &SignalHandlerId)[src]
fn stop_signal_emission(&self, signal_name: &str)[src]
fn disconnect(&self, handler_id: SignalHandlerId)[src]
fn connect_notify<F>(&self, name: Option<&str>, f: F) -> SignalHandlerId where
F: 'static + Send + Sync + Fn(&T, &ParamSpec), [src]
F: 'static + Send + Sync + Fn(&T, &ParamSpec),
unsafe fn connect_notify_unsafe<F>(
&self,
name: Option<&str>,
f: F
) -> SignalHandlerId where
F: Fn(&T, &ParamSpec), [src]
&self,
name: Option<&str>,
f: F
) -> SignalHandlerId where
F: Fn(&T, &ParamSpec),
fn notify<'a, N>(&self, property_name: N) where
N: Into<&'a str>, [src]
N: Into<&'a str>,
fn notify_by_pspec(&self, pspec: &ParamSpec)[src]
fn has_property<'a, N>(&self, property_name: N, type_: Option<Type>) -> bool where
N: Into<&'a str>, [src]
N: Into<&'a str>,
fn get_property_type<'a, N>(&self, property_name: N) -> Option<Type> where
N: Into<&'a str>, [src]
N: Into<&'a str>,
fn find_property<'a, N>(&self, property_name: N) -> Option<ParamSpec> where
N: Into<&'a str>, [src]
N: Into<&'a str>,
fn list_properties(&self) -> Vec<ParamSpec>[src]
fn connect<'a, N, F>(
&self,
signal_name: N,
after: bool,
callback: F
) -> Result<SignalHandlerId, BoolError> where
F: Fn(&[Value]) -> Option<Value> + Send + Sync + 'static,
N: Into<&'a str>, [src]
&self,
signal_name: N,
after: bool,
callback: F
) -> Result<SignalHandlerId, BoolError> where
F: Fn(&[Value]) -> Option<Value> + Send + Sync + 'static,
N: Into<&'a str>,
fn connect_local<'a, N, F>(
&self,
signal_name: N,
after: bool,
callback: F
) -> Result<SignalHandlerId, BoolError> where
F: Fn(&[Value]) -> Option<Value> + 'static,
N: Into<&'a str>, [src]
&self,
signal_name: N,
after: bool,
callback: F
) -> Result<SignalHandlerId, BoolError> where
F: Fn(&[Value]) -> Option<Value> + 'static,
N: Into<&'a str>,
unsafe fn connect_unsafe<'a, N, F>(
&self,
signal_name: N,
after: bool,
callback: F
) -> Result<SignalHandlerId, BoolError> where
F: Fn(&[Value]) -> Option<Value>,
N: Into<&'a str>, [src]
&self,
signal_name: N,
after: bool,
callback: F
) -> Result<SignalHandlerId, BoolError> where
F: Fn(&[Value]) -> Option<Value>,
N: Into<&'a str>,
fn emit<'a, N>(
&self,
signal_name: N,
args: &[&dyn ToValue]
) -> Result<Option<Value>, BoolError> where
N: Into<&'a str>, [src]
&self,
signal_name: N,
args: &[&dyn ToValue]
) -> Result<Option<Value>, BoolError> where
N: Into<&'a str>,
fn downgrade(&self) -> WeakRef<T>[src]
fn bind_property<'a, O, N, M>(
&'a self,
source_property: N,
target: &'a O,
target_property: M
) -> BindingBuilder<'a> where
M: Into<&'a str>,
N: Into<&'a str>,
O: ObjectType, [src]
&'a self,
source_property: N,
target: &'a O,
target_property: M
) -> BindingBuilder<'a> where
M: Into<&'a str>,
N: Into<&'a str>,
O: ObjectType,
fn ref_count(&self) -> u32[src]
impl<'a, T> ToGlibContainerFromSlice<'a, *const GList> for T where
T: GlibPtrDefault + ToGlibPtr<'a, <T as GlibPtrDefault>::GlibType>, [src]
T: GlibPtrDefault + ToGlibPtr<'a, <T as GlibPtrDefault>::GlibType>,
type Storage = (Option<List>, Vec<Stash<'a, <T as GlibPtrDefault>::GlibType, T>>)
fn to_glib_none_from_slice(
t: &'a [T]
) -> (*const GList, <T as ToGlibContainerFromSlice<'a, *const GList>>::Storage)[src]
t: &'a [T]
) -> (*const GList, <T as ToGlibContainerFromSlice<'a, *const GList>>::Storage)
fn to_glib_container_from_slice(
_t: &'a [T]
) -> (*const GList, <T as ToGlibContainerFromSlice<'a, *const GList>>::Storage)[src]
_t: &'a [T]
) -> (*const GList, <T as ToGlibContainerFromSlice<'a, *const GList>>::Storage)
fn to_glib_full_from_slice(_t: &[T]) -> *const GList[src]
impl<'a, T> ToGlibContainerFromSlice<'a, *const GPtrArray> for T where
T: GlibPtrDefault + ToGlibPtr<'a, <T as GlibPtrDefault>::GlibType>, [src]
T: GlibPtrDefault + ToGlibPtr<'a, <T as GlibPtrDefault>::GlibType>,
type Storage = (Option<PtrArray>, Vec<Stash<'a, <T as GlibPtrDefault>::GlibType, T>>)
fn to_glib_none_from_slice(
t: &'a [T]
) -> (*const GPtrArray, <T as ToGlibContainerFromSlice<'a, *const GPtrArray>>::Storage)[src]
t: &'a [T]
) -> (*const GPtrArray, <T as ToGlibContainerFromSlice<'a, *const GPtrArray>>::Storage)
fn to_glib_container_from_slice(
_t: &'a [T]
) -> (*const GPtrArray, <T as ToGlibContainerFromSlice<'a, *const GPtrArray>>::Storage)[src]
_t: &'a [T]
) -> (*const GPtrArray, <T as ToGlibContainerFromSlice<'a, *const GPtrArray>>::Storage)
fn to_glib_full_from_slice(_t: &[T]) -> *const GPtrArray[src]
impl<'a, T> ToGlibContainerFromSlice<'a, *mut GArray> for T where
T: GlibPtrDefault + ToGlibPtr<'a, <T as GlibPtrDefault>::GlibType>, [src]
T: GlibPtrDefault + ToGlibPtr<'a, <T as GlibPtrDefault>::GlibType>,
type Storage = (Option<Array>, Vec<Stash<'a, <T as GlibPtrDefault>::GlibType, T>>)
fn to_glib_none_from_slice(
t: &'a [T]
) -> (*mut GArray, <T as ToGlibContainerFromSlice<'a, *mut GArray>>::Storage)[src]
t: &'a [T]
) -> (*mut GArray, <T as ToGlibContainerFromSlice<'a, *mut GArray>>::Storage)
fn to_glib_container_from_slice(
t: &'a [T]
) -> (*mut GArray, <T as ToGlibContainerFromSlice<'a, *mut GArray>>::Storage)[src]
t: &'a [T]
) -> (*mut GArray, <T as ToGlibContainerFromSlice<'a, *mut GArray>>::Storage)
fn to_glib_full_from_slice(t: &[T]) -> *mut GArray[src]
impl<'a, T> ToGlibContainerFromSlice<'a, *mut GList> for T where
T: GlibPtrDefault + ToGlibPtr<'a, <T as GlibPtrDefault>::GlibType>, [src]
T: GlibPtrDefault + ToGlibPtr<'a, <T as GlibPtrDefault>::GlibType>,
type Storage = (Option<List>, Vec<Stash<'a, <T as GlibPtrDefault>::GlibType, T>>)
fn to_glib_none_from_slice(
t: &'a [T]
) -> (*mut GList, <T as ToGlibContainerFromSlice<'a, *mut GList>>::Storage)[src]
t: &'a [T]
) -> (*mut GList, <T as ToGlibContainerFromSlice<'a, *mut GList>>::Storage)
fn to_glib_container_from_slice(
t: &'a [T]
) -> (*mut GList, <T as ToGlibContainerFromSlice<'a, *mut GList>>::Storage)[src]
t: &'a [T]
) -> (*mut GList, <T as ToGlibContainerFromSlice<'a, *mut GList>>::Storage)
fn to_glib_full_from_slice(t: &[T]) -> *mut GList[src]
impl<'a, T> ToGlibContainerFromSlice<'a, *mut GPtrArray> for T where
T: GlibPtrDefault + ToGlibPtr<'a, <T as GlibPtrDefault>::GlibType>, [src]
T: GlibPtrDefault + ToGlibPtr<'a, <T as GlibPtrDefault>::GlibType>,
type Storage = (Option<PtrArray>, Vec<Stash<'a, <T as GlibPtrDefault>::GlibType, T>>)
fn to_glib_none_from_slice(
t: &'a [T]
) -> (*mut GPtrArray, <T as ToGlibContainerFromSlice<'a, *mut GPtrArray>>::Storage)[src]
t: &'a [T]
) -> (*mut GPtrArray, <T as ToGlibContainerFromSlice<'a, *mut GPtrArray>>::Storage)
fn to_glib_container_from_slice(
t: &'a [T]
) -> (*mut GPtrArray, <T as ToGlibContainerFromSlice<'a, *mut GPtrArray>>::Storage)[src]
t: &'a [T]
) -> (*mut GPtrArray, <T as ToGlibContainerFromSlice<'a, *mut GPtrArray>>::Storage)
fn to_glib_full_from_slice(t: &[T]) -> *mut GPtrArray[src]
impl<T> ToOwned for T where
T: Clone, [src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T[src]
fn clone_into(&self, target: &mut T)[src]
impl<T> ToValue for T where
T: SetValue + ?Sized, [src]
T: SetValue + ?Sized,
impl<T, U> TryFrom<U> for T where
U: Into<T>, [src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>, [src]
U: TryFrom<T>,